Effects of altered sialic acid biosynthesis on N-linked glycan branching and cell surface interactions
نویسندگان
چکیده
GNE (UDP-GlcNAc 2-epimerase/ManNAc kinase) myopathy is a rare muscle disorder associated with aging and is related to sporadic inclusion body myositis, the most common acquired muscle disease of aging. Although the cause of sporadic inclusion body myositis is unknown, GNE myopathy is associated with mutations in GNE. GNE harbors two enzymatic activities required for biosynthesis of sialic acid in mammalian cells. Mutations to both GNE domains are linked to GNE myopathy. However, correlation between mutation-associated reductions in sialic acid production and disease severity is imperfect. To investigate other potential effects of GNE mutations, we compared sialic acid production in cell lines expressing wild type or mutant forms of GNE. Although we did not detect any differences attributable to disease-associated mutations, lectin binding and mass spectrometry analysis revealed that GNE deficiency is associated with unanticipated effects on the structure of cell-surface glycans. In addition to exhibiting low levels of sialylation, GNE-deficient cells produced distinct N-linked glycan structures with increased branching and extended poly-N-acetyllactosamine. GNE deficiency may affect levels of UDP-GlcNAc, a key metabolite in the nutrient-sensing hexosamine biosynthetic pathway, but this modest effect did not fully account for the change in N-linked glycan structure. Furthermore, GNE deficiency and glucose supplementation acted independently and additively to increase N-linked glycan branching. Notably, N-linked glycans produced by GNE-deficient cells displayed enhanced binding to galectin-1, indicating that changes in GNE activity can alter affinity of cell-surface glycoproteins for the galectin lattice. These findings suggest an unanticipated mechanism by which GNE activity might affect signaling through cell-surface receptors.
منابع مشابه
Altered Tumor-Cell Glycosylation Promotes Metastasis
Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompass aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of cer...
متن کاملStructures of B-Lymphotropic Polyomavirus VP1 in Complex with Oligosaccharide Ligands
B-Lymphotropic Polyomavirus (LPyV) serves as a paradigm of virus receptor binding and tropism, and is the closest relative of the recently discovered Human Polyomavirus 9 (HPyV9). LPyV infection depends on sialic acid on host cells, but the molecular interactions underlying LPyV-receptor binding were unknown. We find by glycan array screening that LPyV specifically recognizes a linear carbohydr...
متن کاملGlycosylation-Dependent Lectin-Receptor Interactions Preserve Angiogenesis in Anti-VEGF Refractory Tumors
The clinical benefit conferred by vascular endothelial growth factors (VEGF)-targeted therapies is variable, and tumors from treated patients eventually reinitiate growth. Here, we identify a glycosylation-dependent pathway that compensates for the absence of cognate ligand and preserves angiogenesis in response to VEGF blockade. Remodeling of the endothelial cell (EC) surface glycome selective...
متن کاملThe sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease
Glycomics is a rapidly growing field that focuses on the structure and function of carbohydrates (glycans) in biological systems. Glycan interactions play a major role in infectious disease, at all stages of colonisation and disease progression. Neisseria meningitidis, the cause of meningococcal sepsis and meningitis, and Neisseria gonorrhoeae, which causes the sexually transmitted infection go...
متن کاملDendritic Cells: A Spot on Sialic Acid
Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host-host and host-pathogen interactions occur. The role of glycan epitopes in cell-cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are cen...
متن کامل